Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities
نویسندگان
چکیده
A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m(-2). Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost.
منابع مشابه
Geobacter Dominates the Inner Layers of a Stratified Biofilm on a Fluidized Anode During Brewery Wastewater Treatment
In this study, we designed a microbial electrochemical fluidized bed reactor (ME-FBR), with an electroconductive anodic bed made of activated carbon particles for treating a brewery wastewater. Under a batch operating mode, acetate and propionate consumption rates were 13-fold and 2.4-fold higher, respectively, when the fluidized anode was polarized (0.2 V) with respect to open circuit conditio...
متن کاملIMMOBILIZATION OF MICROBIAL CELLS FOR THE PRODUCTION OF ORGANIC ACIDS
Techniques of immobilization of microbial- cells have been established by multifunctional reagents such as glutaraldehyed on a solid support. Immobilized cell reactor was designed to demonstrate stability of cross linking of whole cells for the production of organic acids. An eighty-six percent conversion of glucose was obtained for an eight hour retention time. The immobilized cell reacto...
متن کاملEffect of batch vs. continuous mode of operation on microbial desalination cell performance treating municipal wastewater
Microbial desalination cells (MDCs) have great potential as a cost-effective and green technology for simultaneous water desalination, organic matter removal and energy production. The aim of this study was to compare the performance of a MDC under batch and continuous feeding conditions. Hence, power and current output, coulombic efficiency, electron harvest rate, desalination rate and COD re...
متن کاملA Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant
Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane biorea...
متن کاملBiological degradation of potato pulp waste and microbial community structure in microbial fuel cells
The microbial electrochemical cell (MEC) is a promising waste treatment technology to accomplish simultaneous alternative energy production and degradation of organic matters. Potato pulp waste (PPW) from a potato processing plant contains a large amount of carbohydrates that need be degradated before discharge into the environment. Here, we describe electricity generation in singlechamber micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016